# **Radiopaque Compounds**



#### for minimally invasive medical devices



### **Purpose of Radiopaque Compounds**



Polymers: inherently transparent to x-ray

Radiopaque fillers: visible under x-ray

Radiopaque compounds: visible under x-ray imaging or fluoroscopy

Surgeon can follow device through body



## **Applications**



**PTCA** Catheters **Central Venous Catheters Foley Catheters** Naso Gastric Feeding Tubes Pacemaker Lead Placement Neurovascular Catheters Diagnostic Cardiovascular Catheters



#### **Polymers used for Devices**

| Category    | Class                       | Examples                                       |  |
|-------------|-----------------------------|------------------------------------------------|--|
| Specialty   | Polyolefins                 | LDPE, HDPE, LLDPE, PP                          |  |
|             | Styrenics                   | PS, SAN, ABS, HIPS                             |  |
|             | Vinyls                      | PVC, EVA                                       |  |
| Engineering | Polyamides                  | Nylon 6, 6/6, 6/10, 6/12, 11, 12,<br>Amorphous |  |
|             | Polyesters                  | PET, PBT, PETG                                 |  |
|             | Acetals                     | Copolymer, Homopolymer                         |  |
|             | Thermoplastic<br>Elastomers | PU, PEBA, COPE                                 |  |
|             | Polycarbonate               |                                                |  |
| Performance | High Temperature            | PEEK, PES, PPS, PSU, LCP                       |  |
|             | Fluoropolymers              | FEP, PVDF, ETFE                                |  |



### **Common Radiopaque Fillers**

Barium sulfate Bismuth subcarbonate Bismuth trioxide Bismuth oxychloride Tungsten





### **Selecting Radiopaque Fillers**

Base resin Tubing wall thickness Surface smoothness needed Color Physical properties needed in end device Where device will be used in the body Sterilization technique **Economics** 



### **Barium Sulfate (BaSO<sub>4</sub>)**



First widely used in medical formulations Relatively inexpensive white powder Very process stable Must be pre-dried Loadings of 40-60% depending on polymer Require high loading for equivalent radiopacity White: easy to color but poor tinting strength



#### **Barium Sulfate** Typical Loading Levels





# Bismuth Subcarbonate (Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub>)



White: strong pigment & difficult to color match Loadings of 30-50% by weight possible Unstable at temperatures above 400°F (yellows) Not compatible with some TPU's



#### **Bismuth Subcarbonate** Typical Loading Levels





# **Bismuth Trioxide (Bi<sub>2</sub>O<sub>3</sub>)**



Yellow color

Turns brown at high processing temperature Can be loaded up to 60% by weight Can get gritty surfaces Compatible with most resins





#### **Bismuth Trioxide** Typical Loading Levels





# **Bismuth Oxychloride (BiOCI)**



White color

More temperature stable than bismuth subcarbonate Compatible with a wide range of resins "Platelet-like" particles provide smooth shiny surface Susceptible to UV degradation (requires UV stabilizer) Difficult to color (can produce a "pearlescent" finish)



#### **Bismuth Oxychloride** Typical Loading Levels





# Tungsten (W)



Very heavy, dark metal powder (hard to color) Compatible with virtually any resin Loading up to 90% by weight possible Can show matte finish in high loadings Very abrasive (high wear to process equipment) Filler of choice in very thin walled devices Oxidation in the presence of oxygen and heat Highly flammable (pay particular attention to drying techniques)



#### **Tungsten** Typical Loading Levels









# **Radiopaque Filler Summary**

| Radiopaque Filler    | Price    | Specific<br>Gravity<br>(gm/cm <sup>3</sup> ) | Heat<br>Stability<br>(°F) | Particle Size<br>(μm) | Characteristics                                                                                        |
|----------------------|----------|----------------------------------------------|---------------------------|-----------------------|--------------------------------------------------------------------------------------------------------|
| Barium Sulfate       | \$       | 4.4                                          | 700                       | 0.5-2                 | White powder, medium bulk density, compacts, semi-free flowing with assist                             |
| Bismuth Subcarbonate | \$\$     | 8                                            | 400-450                   | 1-2                   | Pale white powder, free-flowing, dusty, low to medium<br>bulk density                                  |
| Bismuth Oxychloride  | \$\$     | 8.9                                          | 400*                      | 1-2                   | Yellow powder, high bulk density, free-flowing, *turns<br>brown at approx. 400°F                       |
| Bismuth Trioxide     | \$\$\$   | 7.8                                          | 500                       | 2-12                  | White to light gray powder, very dusty, low to medium<br>bulk density, semi free-flowing               |
| Tungsten             | \$\$\$\$ | 19.3                                         | **                        | 1-2                   | Very heavy, steel color powder, abrasive, ** unstable in oxygen, very stable once dispersed in plastic |

